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1 Introduction

Optical direct-detection systems have long been considered by NASA for deep-space com-
munication, due to their small size and relatively high power efficiency [1]. For these low
power, low data rate applications (a few tens of kilobits/s), good performance for little
power is paramount; under these constraints, pulse-position modulation (PPM) was shown
to be a well suited modulation scheme [2, 3]. PPM has also been the modulation of choice
for NASA’s direct-detection intersatellite link (ISL) applications for which quaternary PPM
(QPPM) has been much studied [4, 5] for data rates of a few hundred megabits/s. In the
future, even higher data rates are envisioned for which PPM may not be well suited due
to its inherent throughput limitations: With PPM, the only way throughput can increase
is by reducing the pulsewidth. Thus, if Q is the PPM alphabet size, T, the slot duration
(pulsewidth), and r the rate in nats per second, we have

rT, = In(Q) _ In(3) nats/slot, (1)

Q@ ~ 3
which suggests ternary PPM can yield the largest throughput for a fixed pulsewidth T,,.

Thus, there is a motivation for investigating the use of other modulation schemes for
high rate systems which, hopefully, do not have the limitations of PPM. One such scheme is
overlapping PPM (OPPM) which was originally studied in [6] and later in [7, 8, 9]. OPPM
is a generalization of PPM that allows more than one pulse-positions per pulsewidth and
preserves some of the desirable properties of PPM, such as equal energy signals and low duty-
cycle. If @ is the number of nonoverlapping pulse-positions in a T-second symbol interval
(i.e. @ = T/T,) and N (referred to also as the indez of overlap) the number of pulse-
positions per pulsewidth, then the total number of OPPM symbols J is J = N(Q — 1) + 1.
For N =1, OPPM reduces to PPM. If we constrain Q to be an integer, then to obtain a
desirable number of modulation signals J, the index of overlap must be N = (J-1)/(Q-1),
which is a rational number. For r the rate in nats/s, the following is true for OPPM

_I[NQ-1)+1]  In(N+1)
rT, = 3 < 5

which (at least in theory) can be made as large as desired by increasing N. Clearly, there

nats/slot, (2)

is a penalty to be paid when N is increased, both in error-probability and synchronization
performance, which must be taken into account in comparing OPPM to other modulation
schemes. Figure 1 illustrates OPPM for N = 3 and Q =2, which results in J = 4 signals.
Another modulation scheme that has been considered recently in the literature is mul-
tipulse or combinatorial PPM (MPPM) [10, 11]. As with OPPM, MPPM is another gen-
eralization of PPM that allows more than one pulses per symbol interval. Thus, if the
number of pulses allowed is p, the number of MPPM symbols is M = (g), which increases
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monotonically for I < p < |@Q/2]. Clearly, the interesting values of p are in the interval
1 <p<|Q/2]. Like PPM, MPPM is an equal energy signaling scheme, and like OPPM
it increases the number of available signals for the same pulsewidth. For MPPM, the data
rate relates to Q and p according to

nats/slot. (3)
In view of some well known inequalities (see for example [12], page 284), we have,

h(p/Q) - ‘"“Q;Q) < T, < h(p/Q) nats/slot, (4)

where h(z) = —zln(z) — (1 - z)In(1 — z) is the binary entropy function. The ratio p/Q
can be identified as the probability of a pulsed-slot in a sequence of MPPM symbols. As
Q@ — oo, rT, approaches h(p/Q) which is the largest amount of information that can be
produced by any binary source with prior symbol probabilities p/Q and (1 -p/Q) [12).
Thus, at least asymptotically, MPPM is a throughput efficient scheme. For comparison,
QPPM has a probability of a pulsed-slot of 1/4 and a throughput of In(2)/2 = 0.346- - -
nats/slot. For the same probability of 1/4, MPPM can potentially achieve (for large Q)
closed to A(1/4) = 0.562- .. nats/slot, a throughput increase of more than 60%.

In the next section, we derive capacity, cutoff-rate and error-probability expressions for
OPPM and MPPM. Section 3 compares the various modulation schemes in terms of peak-
power requirements and throughput efficiency. Section 4 gives a flavor of the coding problem
over OPPM and MPPM symbols, and Section 5 concludes.

2 Error-Probability, Cutoff-Rate, and Capacity

Here we derive expressions for the error-probability, cutoff-rate, and capacity for MPPM and

OPPM.

2.1 Multi-Pulse PPM

First we derive an expression for the optimum (maximum-likelihood) receiver for MPPM

signals.

2.1.1 Optimum Receiver

Let D={d; k=1,2,... y M} be the set of all binary sequences of length @ having weight
(number of ones) equal to p. Clearly, there is a one-to-one correspondence between binary
sequences in D and MPPM signals, the position of ones in the binary sequence indicating
the position of the pulsed slots in a (@, p)-MPPM signal. Further, for the k-th MPPM signal
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let wx = {wi,wkz,-++,wi,} be the set of integers from the set {1,2,---,@Q} indicating
the position of the p ones, and Wy = {Wi1,Wk2,* "+ Wk(@-p)} be the set integers indicating
the position of the (Q — p) zeros in that symbol. Finally, let X = (X1,X2,-+,Xq) and
N = (N, Nz, -+, Ng) be the random vector of photons detected in each of the Q slots and
a particular realization of it respectively. Clearly, the mean number of photons, A;, in the
i-th slot can take one of two values, depending on whether that slot is pulsed or not:

A; = { (As + AT, if slot i.s pulsed (5)

AT, otherwise,
where A, and )\, are the signal and noise intensities respectively, and T, is the slot duration.
A maximum-likelihood (ML) receiver then performs

max Pr(X = N|d). (6)

dy €D

Assuming Poisson statistics for the observed counts, we have

Q _-A AN
e AL
Pr(X = Nld,) = !
1=1 N"
exp(= T2, A) £ Moy, T
= [(As + A2) )] ke (An T)"’*J
H?]N" tl;[l ]=H1
T LT A\ e
= exp(— 2[\ E N ,I_-Il (1+‘A-:)
As Zupzl kal
= C(l +/\—) (7)

where c is not a function of the data. Taking logarithms and dropping unnecessary terms,

the receiver can equivalently implement

max & = Z Nuy, - (8)

i=1

In other words, the receiver accumulates the number of photons in each pulsed slot for each

possible transmitted symbol and declares the symbol corresponding to the one with the
largest accumulated counts as the transmitted symbol.

Although the above analysis was done for PIN diode receivers, we can show that the
same receiver is optimum for avalanche photodetectors.

2.1.2 Error-Probability

In this subsection we derive an exact expression for the symbol error-probability for a
quantum-limited channel?, and an upper bound on the symbol error-probability when back-
ground noise is present.

2An expression for the error-probability derived in [10] is not correct as it ignores the possibility of making
a right decision even when one or more pulses are erased.



Quantum-Limited Channel: Assuming that all M symbols are equiprobable, we have
| M

P(&) = MZP(Sld,-) = P(Eldy), (9)
=1

where the second equality is due to the symmetry of MPPM that implies P(&]d;) is the same
for all transmitted symbols d;. Since for the quantum-limited channel errors occur only when
one or more pulses are erased, we can write

P
P(€) = 3" P(&|k erasures) P(k erasures). (10)
k=1
When £ pulses are erased, a random decision must be made among the N, = (Q‘f"’k) symbols
that have pulses at the (p — k) positions were pulses were detected. Since the probability of
exactly k erased pulses is (f) e*(1 — €)P~* we have

Ny —1(p k —k
[oA N —_ 4
P(b)_g——Nk (k)e (1= ¢)P %, (11)
where
€=Ml . (12)

is the pulse-erasure probability. An excellent approximation to (11) for ¢ less than approxi-

[ Q-p
P(E)N(Q—p-}-l)pe' (13)

mately 1072 is given by

Background Noise Channel: For the noisy channel, we have

M
P(E) < P [U @ s@}lle

< f_{:P(fl < 4ldy), (14)
j=2

P(& < 6|dy) < exp [—%dl’dy(dl,dj)J , (15)

where

¢ = (VTR - AT (16)

and dy(dy,d;) is the Hamming distance between dy and d;.
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To proceed further, we need to find the Hamming distance profile for the MPPM sig-
nals. Towards this end, we first note that the possible values that dy(d;,d;) can take are
2,4,---,2p. Further study using counting arguments shows that if ar, k=1,2,---,pis the
number of symbols at distance 2k from d,, then

w=() (%)

In fact, it can be shown that because of the symmetry of the MPPM signals noted above,
we have the same distance profile when any signal d; is sent (not just when d is sent). It
can be easily verified that $2_ a, = M — 1. Thus, the (M — 1) terms in the sum in (14)
can be partitioned into groups of a; terms each, for each of which the Chernoff-bound in
(15) equals exp(~kd?). Under these observations, equations (14) and (15) combine to give

P
Pmppm(g) S Z ake-kdz- (18)
k=1

The general observation to be made from the above derivation is that what determines
the performance of MPPM signals (at least for large signal levels when the bound above is
tight) is the minimum Hamming distance between symbols. We will use this observation in
Section 4 in determining the performance of trellis-coded MPPM signals.

2.1.3 Cutoff-Rate

We make use of the following general expression for the cutoff- rate derived in (3], valid for
optical channels with observations modeled by conditional Poisson processes and both for

quantum-limited® and noisy channels
M M 1
Ro=—1In Tiilz > qig; exp(—§dfj) (nats/cu), (19)
q

=1 =1

where M is the number of MPPM signals, ¢; is the prior probability for the i-th signal and

& = /OT [\/s.'(t) + A = \/55(2) + A,,]zdt. (20)

In (20), [si(t)+An) in photons/sec is the mean rate (intensity) of the observed Poisson process
when the i-th signal is sent, s,(t) is the signal intensity due to the optical beam impinging

on the photodetector, and ), is the noise intensity as defined previously.
For MPPM signals, we can express (20) as

& = ddy(d;, ;) (21)

3 Although expressions for the cutoff-rate and capacity for MPPM were derived in [13] for quantum-limited
channels (A, = 0), we found that these expressions significantly underestimate the cutoff-rate and capacity
of the channel, because of the pessimistic way erasures were defined.
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where d? and dy(d;, d;) were defined above.
Then, for equiprobable signaling, the cutoff-rate becomes

1 A& ~Lddy(d, d,)
Ry, = —In sze 2 "

=1 j=1
Ly
- - [- x.] , (22)
AI =1
where
1 f: $d?dy(d, d,) (23)
Xi=— e B
M J=1

Using the symmetry of the MPPM signal set, we can show that X; = X} for all i and k.
Further, using the results in the previous subsection, we can write

3

1 2
Xi=— —kd® 2
i k; ake (24)
and thus »
1 2
ROmppm =—In [_ Z ake-kd } ) (25)
AI k=0

with a, defined above.
It is easy to verify that for p = 1, the above expression yields the cutoff-rate of Q-ary

PPM.

2.1.4 Capacity

The MPPM direct-detection channel can be modeled as a discrete memoryless channel
(DMC) with M = (f) inputs and L outputs. For a quantum-limited channel where the
only degradation occurs when 1,2, - - . , P pulses are erased, the number of outputs equals the
number of binary codewords of length Q and weight at most p. Thus,

=5 ()

Of the L possible outputs, (2) correspond to the input symbols and the rest to words
containing one or more erasures. An example of a DMC model for MPPM with Q = 4 and
p = 2 is shown in Figure 3. The capacity of the channel is given by

s Ply;lz:)
Cmppm = rir’lgg(;.]:zl P(yj,.’l,',')P(I.') In ( P(y]‘) ) . (26)

Due to the easily established symmetry of the channel, (see Cover [12], Section 8.2, or
Gallager [15]), the maximizing prior distribution is uniform, P(z;) = 1/M,i=1,2,--- M.
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Further, it can be seen that the inside sum in (26) is the same for each z;. Skipping the

derivations, we finally obtain

Cmppm - z (:) Ck(l —_ C)p-k ln (—(a?—:ﬁ)‘) (27)

In(M) - 3 (Z) (1 = efP~*1n ((Q P + k)) . (28)

k=0

The expression is easily seen to simplify to that of PPM for p = 1.

2.2 Overlapping PPM

In this subsection we present expressions for the error-probability, cutoff-rate, and capacity
of OPPM. The optimum receiver for OPPM was derived in [8] and (as expected) consists of
finding the slot with the largest number of observed photons.

2.2.1 Error-Probability

Quantum-Limited Channel: An exact expression* for the error probability has been
derived in this case for N in the range from one to four and arbitrary J. In all of these cases
it can be shown (we skip the derivations here as they are somewhat tedious but otherwise

straightforward) that
J-1 AT,

P(E) = = exp(-=22), (29)

where J = N(Q — 1) + 1 is the OPPM alphabet size. Computation for larger values of N
is easy but becomes progressively more tedious. Based on the results for the values of N

considered, we conjecture that the above expression is true for all N.

Background Noise Channel: When background noise is present, the following upper-

bound was derived in [8] which we present here for completeness

N
Popo(€) <~ 3 b=k /N (30)
Jk:l
where
; _{Q(J-k), k=1,2,---,(N =1) 31)
*TVJ-N)J=N+1) k=N,

and d? is as defined in (16).

4An expression derived in [8] for the error probability is exact only for N = 2, and an approximation
otherwise.



2.2.2 Cutoff-Rate

Here again we make use of (19). Using (20) we can write

2d?
d|2_; = —N (5,‘_,‘ (32)
where d? is as defined in (16) and
o li=gl i fi-j <N
b= { : if | —j| > M. (33)

Note that for ; # J &, takes values in {1,2,---, N}; if we consider the number of pairs i, j
for which 6;; = k, then we can show that it is equal to b, given in (31). Letting

y=e N (34)
and assuming equiprobable symbols we obtain (for @>1)
1 1 &
Ry = —In —+—Zb;,.7 (35)
J J2 k=1
L, U=-MUJ-N+1 L 220=9M 2 {MN 7(1 —7N)”

= il N =
= l“{J+ g L A g 8 e (1=

For the noiseless case, i.e. A, =0, (35) holds by substituting d? = AsT,, which implies that
Y = e MV is the erasure probability for signaled chips of duratiop T,/N. Even though
more general than the expression obtained in [7] (valid only when An = 0), (35) is much
simpler to compute.

In the limit as N — oo, (35) reduces to

B Q-2\", 21-¢ 2¢’ 2(1 = ¢)
oo = ‘l“{(cz—l) E+(Q—1)d2+(Q—1)2d2—(Q-l)"d“}
=~ In [MJ y @ >1, (36)

where ¢ = e~ The approximation in (36) is valid for large values of d? and was also
derived in [7] for quantum-limited channels.

2.2.3 Capacity

The capacity of OPPM was derived in (7] for a quantum-limited channel and is given here

for reference

N N-1 J4N-j-1 _ f7—-1
Coppm = ; > X c(k,j)ln[c(k,j)h”"(l—7)'(. )

1t —2
1

I=1-1 k=1



J+N-

+ "1 =) Y o(k,0) Infe(k, 0)) (37)
k=1
where
c(k,j):-}min(k,N—j,J'{-N—k—j). (38)

2.3 On-Off Keying

Finally, for comparison purposes we present the cutoff-rate and error-probability of OOK,
which was not in the past considered for free-space applications. The main reason for not
considering OOK in such applications is the possibility of getting long sequences of ones or
zeros that degrade synchronization performance, and in the former case require the laser
to be on for a long time. Both problems are solvable, if one is willing to sacrifice some
throughput through the use of appropriate line coding, but we will not pursue this in this
paper.

The well known expression for the cutoff-rate for OOK, achieved with equiprobable sig-

naling, is
2

Roook = In [m] , (39)

and the error-probability is
1
Pook(g) = 56-A’T’- (40)

The capacity of OOK is attained by a non-uniform prior distribution and is given by

Cook = In [(1 = ¢)e™ + 1. (41)

3 Performance Comparisons

In this section we use the expressions derived above to compare the performances of the
various modulation schemes in terms of power-efficiency for a given throughput, capacity and
cutoff-rate and peak power requirements. We address coded error-probability performance
in the section that follows.

3.1 Power Efficiency

For coded systems, the capacity is a fundamental limit on the rates for reliable communica-
tion: below capacity error-probability can be made as small as desired by the use of (possibly
very complex) coding, whereas above capacity this is not possible, no matter how complex
the code [12, 15]. Although rates up to capacity are theoretically possible, researchers have
found that coding complexity increases significantly at rates approaching capacity. In con-
trast, it was argued by Wozencraft and Kennedy [16] and Massey [17] that the cutoff-rate
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of a system, which is upper-bounded by capacity, yields a practical limit on code rates for
reliable communication. In this subsection we will use both the cutoff-rate and capacity as
indicators of the achievable rates in order to investigate the throughput efficiencies of OOK,
PPM, OPPM and MPPM.

Following {18, 19], we let r be the desired throughput in nats per second and T, the
desired pulsewidth. Both constraints stem from practical considerations where a certain
throughput is required but the pulsewidth cannot be reduced beyond some limit. Fixing the
throughput and the pulsewidth implies the following constraining equation (since T' = QT,
for PPM, MPPM and OPPM)

rT, = %E

nats/slot. (42)
For a fixed average noise photons per symbol, £,,, and a fixed overlap N for OPPM or a fixed
p for MPPM, (42) can be satisfied by varying the average number of signal photons/symbol
L,, where for PPM and OPPM, £, = A,T, and for MPPM, £, = pA,T,. If welet £,(Q,rT,, h)
(where h = N for OPPM and h = p for MPPM) be the value of L, satisfying (42), then the

throughput efficiency in nats per photon is

_ Ro _ rT,Q
Ropr = L0 Toh) ~ QTR nats/photon. (43)

In the following, we assume a quantum-limited channel for simplicity and also because at
the high data rates envisioned for ISL systems only a small fraction of a noise photon is
expected per slot (assuming the sun is not in the field of view) [14].

In general, explicit analytical solution of (42) for £(Q,rT,, k) is not possible, except for
some special cases, such as for PPM, p = 2 MPPM and N =2 OPPM, for which:

rT,Q
Roph = (0 =1) = n[Qexp(—r Q) — 1)’ PPM (44)
Ropn = rTsQ ., MPPM,p=2, (45)
2In(Q - 3) - 2In [ BQ(Q - 3)exp(-rT.Q) + 2] - 2]
ROph = 2 7‘T3Q 2 OPPM’ N _ 2.
QIH(QQ - 3) —2In [ % eXp(—T‘T,Q) - 4Q2(2)121Q)+_15 b 1]

(46)

For OOK,
Ropn = 2 < (47)

AT, —In [2e-T: — 1] —
The denominator of the above equations corresponds to the value of £,(Q, 7Ty, h) that sat-
isfies (42). For values of p and N other than two, numerical solutions are easily obtained.
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Figures 4 and 5 plot Ry, in (43) for OPPM and MPPM respectively. For each modulation
scheme and a given rT, and N or p, there is an optimum value of Q@ that maximizes the
throughput efficiency in nats/photon. Both OPPM (N > 1) and MPPM (p > 1) outperform
PPM (N =1 or p = 1). The improvement however of MPPM over PPM is only marginal
and it comes at the price of having to use larger values of @ with increasing p to achieve
the optimum efficiency. The latter is a drawback as large values of Q result in large signal
sets which in turn make implementation more difficult. OPPM performs significantly better
than PPM even with a small overlap N = 2 and requires relatively small values of Q to reach
optimum efficiency.

A comparison between PPM, OPPM, MPPM and OOK as a function of the required
nats/slot is made in Figure 6. The values of Q in the plot are optimum for the corresponding
rT,. Both MPPM and OPPM outperform PPM, especially at high throughputs. N = 2
OPPM is uniformly better than p = 2 MPPM but becomes worse than p =4 MPPM as the
throughput increases. For OPPM, we plot the two extreme overlap cases: N =2and N = oo.
Most of the gain in allowing overlap is obtained for N = 2, with progressively less incremental
improvement as N is increased. OOK does poorly for small required nats/slot, but becomes
better at high rates, outperforming all other schemes above rates of 1/2 nats/slot. For a
practical comparison, let us consider the efficiencies of each modulation scheme at the rate of
In(2)/2 = 0.35 nats/slot, which is the rate at which the currently developed QPPM system
is at. At this rate, PPM has an efficiency of 0.284, OOK 0.392, N = 2 OPPM 0.528, p =2
MPPM 0.482, and p = 4 MPPM 0.533. Clearly, all modulation schemes can do better than
QPPM, whose performance is upper-bounded by 0.284 nats/photon (since this is the value
obtained by the optimum value of Q = 3 for PPM).

Results similar to the above using the capacity instead of the cutoff-rate are shown in
Table 1. For PPM, N = 2 OPPM, and p = 2 MPPM these results were obtained by using
equations, which parallel those in equations (44)-(46). We present below the equations for
PPM and p = 2 MPPM and skip the one for N = 2 OPPM as it is rather long. For OOK,
no closed form expression is available.

—rT,Q

In n(Q !—rT,Q] ’
n(Q)

Coi = PPM (48)
""7'T3Q

91p [2(Q=1)=V/"T.Qn2(@-1)/Ql+1¥(2/Q)]
n W2(Q-1)/qQ]

In general, the capacity results are qualitatively similar to those using the cutoff-rate,

Cop =

MPPM, p = 2. (49)

with some exceptions. For example, whereas N = 2 OPPM is uniformly superior to p=2
MPPM in Figure 6, Table 1 indicates that the latter is slightly better than the former for
the smaller values of »T,. The optimizing values of Q, also shown in the table, are closely
similar to those obtained using the cutoff-rate. Finally, OOK which performs poorly for low
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throughputs, outperforms significantly N = 2 OPPM and p = 2 MPPM for rates above
about 0.45 nats/slot (which is the same observation made using the cutoff-rate). Larger
values of N and p are needed for MPPM and OPPM to compete with QOK at high rates.
Table 2 summarizes the ultimate limits in throughput (nats/slot) for each modulation
scheme. As can be seen, only OPPM can provide throughputs greater than In(2) nats/slot,
but it requires indexes of overlap above N = 4 to do so (which will make synchronization

significantly more difficult).

3.2 Peak-Power Requirements

Here we investigate the peak power requirements of PPM, MPPM, OPPM and OOK as
the data rate 7 in nats per second increases and uncoded error-probability is kept fixed.
We assume a quantum-limited channel. To make the comparison fair between the various
modulation schemes, we compare the peak-power needed to convey a sequence of bits through

the channel at the same sequence error-probability for each modulation scheme.

MPPM: Remembering that MPPM has p times the average energy per symbol compared
to PPM and OPPM (for the same A,T,) and using the approximate expression for error-
probability in (13), we have

_ P p(Q —p)
As = T In [(Q s I)P(E)J photons/sec. (50)

Substituting T, = In(M)/Qr, we obtain
A pQ | |__PQ@-p)
r o In(M) (Q—-p+1)P(E)

The above expression holds as a special case for PPM by setting p = 1. ‘
Clearly, for fixed Q, p and P(£), peak-power increases linearly with the data rate, and

} photons/nat. (51)

thus, to reduce the peak-power requirements, we must minimize the slope (which has units
of photons/nat) on the right-hand side of (51).

Another quantity of interest for practical systems is the peak-to-average power, a, which
for MPPM is given by a = Q/p (note that 1/a is the probability of a pulsed slot in a
sequence of data).

OPPM: An expression parallel to (51) relating the peak power requirements of OPPM to
the throughput for a fixed error-probability can be similarly derived and is given by

)‘s — ArQ In N(Q — 1)
WNQ-D+1] " |[NQ -1+ 1PE)

The peak-to-average power requirements for OPPM are the same as those for PPM: a = Q.

photons/nat. (52)

r
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OOK: For OOK (which has an average energy per symbol equal to A,T,/2), the probability
of sequence error for a sequence of , bits is P(£) =1-[1 — exp[—2A,T,)]L. Then,

A

’—-
r

i1 - Pyt

() photons/nat. (53)

The peak-to-average power for 00K is o = 2.

Table 3 compares the quantity A,/r in photons/nat for the various modulation schemes
at 2, 3, 4, 5, and 6 bits/symbol and an error-probability of 102, For OPPM and MPPM,
the parameter values were chosen to yield the best results for the number of bits/symbol
required. N = 2 for OPPM and p = 2 for MPPM were seen to yield the smallest peak
powers for a fixed data rate.

The table shows that OOK is by far the best. MPPM is inferior to both PPM and
OPPM at two and three bits/symbol but becomes significantly better at the higher rates.
PPM is uniformly better than OPPM, although the difference becomes smaller at the higher
rates. The latter observation may seem surprising at first glance, since whereas throughput
in nats/second for PPM can only increase at the expense of a smaller T, (which means a
larger peak-power A, to maintain the same performance), this is not the case for OPPM. On
the other hand, OPPM requires larger peak-powers to achjeve the same error-probability as
PPM, which apparently is the reason for its being inferior compared to the latter.

3.3 Capacity and Cutoff-Rate Comparisons

Here we compare the capacities and cutoff-rates of the various modulation schemes in
nats/slot as a function of the average energy per nat.

Figure 7 compares the cutoff-rates in nats/slot for OOK, PPM, OPPM and MPPM. For
OPPM we consider N =2 and N = 3 which are small enough not to make synchronization
impractical, and for MPPM., we consider P=2,p =23, and p = 4. The values of @ for PPM,
OPPM and MPPM were chosen to maximize the capacity/cutoff-rate at large signal levels,
namely @ = 3 for PPM, Q = 2 for OPPM and @ = 2p + 1 for MPPM. The superiority of
OOK in this comparison is obvious from the figure. OPPM is inferior to MPPM for small
signal levels but becomes better at the higher levels. For N > 4, OPPM will perform better
than OOK as the average number of signal photons increases, since (see Table 2) OOK
saturates at In(2) nats/slot, whereas OPPM to sIn(N +1) nats/slot.

A comparison using capacity instead cutoff-rate yields results qualitatively similar to
those in Figure 7, which are not presented to save space.
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4 Coding

In this section we compare the coded performances of OPPM and MPPM. In the interest of
space, this comparison is not exhaustive and is only meant to illustrate what the possibilities
are with each modulation scheme. We focus on trellis-coded modulation (TCM), rather than
block-coding (and specifically Reed-Solomon coding), which has been previously studied for
PPM [1, 20, 21] and MPPM [11]. Some work on TCM for optical OPPM with Q = 2 was
presented in [8, 22]. Here we present new results for Q = 4 OPPM and for MPPM.

4.1 OPPM

We consider two examples of how trellis-coded modulation can be used in conjunction with
OPPM to obtain a coding gain and/or increase the throughput. For brevity, we present
results only for the quantum-limited channel, but qualitatively similar results were obtained
for the background noise channel as well.

The first example, which was also studied in [8), starts with Q = 2 PPM, which yields a
throughput of 1/2 bits/slot, and has a peak-to-average power ratio of a = 2. With an index
of overlap N = 7, the number of OPPM signals is J = 8, which results in a threefold increase
in the number of bits per slot from 1/2 to 3/2, while a remains the same. Using a rate 2/3
Ungerboeck code [23] we can trade off some throughput for performance. Figure 8 shows
results for the 8 and 16 state Ungerboeck codes with the trellises populated by OPPM instead
of phase-shift-keying (PSK) signals [23]. Our reference for comparison is QPPM which has
a throughput efficiency of 1/2 bits/slot. We note that the 16-state code is only slightly more
than 1dB worse than QPPM at a symbol-error-probability of 10-5. However, the coded
OPPM system operates at twice the throughput of QPPM. On the negative side, the coded
OPPM system has half the peak-to-average power of QPPM and requires a relatively large
index of overlap N = 7, which implies more stringent synchronization requirements.

As a second example, we consider OPPM with @ = 4. With an index of overlap N = 3,
we obtain J = 10 signals, two of which can be discarded to yield 8 modulation signals.
However, a more efficient scheme is to use a fractional index of overlap N = 7/3 which also
yields eight modulation signals. The throughput efficiency of this scheme is 3/4 bits/slot
and a rate 2/3 Ungerboeck code can be used to reduce the rate to 1/2 bits/slot (same as for
QPPM) in exchange for a coding gain. Figure 8 shows the performance of the 8 and 16-state
Ungerboeck codes using this signal set. It can be seen that the 8-state and 16-state codes
are about 2.5 dB and 3.0 dB better than QPPM respectively at an error-probability of 10~3,
for the same throughput and peak-to-average power as the latter.

Clearly, even more powerful codes can be designed using this approach that not only give
a coding gain but possibly a throughput gain as well at the expense of more complexity. We

do not pursue this here as our interest is mainly on getting a flavor of what may be possible.
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4.2 MPPM

Here we are interested in coding for MPPM signals at throughputs in bits/slot close to those
of QPPM. Also, of interest is the peak-to-average power parameter a which for MPPM is
a=Q/p.

As indicated above, the minimum Hamming distance for uncoded MPPM signals is two,
which is also that for uncoded QPPM. However, whereas QPPM conveys only 2 bits/symbol,
MPPM can convey more. Let’s compare the performance of uncoded QPPM with that of
uncoded MPPM for the same energy per bit, u photons/bit. For QPPM, we have (X means
“asymptotically™)

P(€) x exp(-2p), (54)

and for MPPM (using the approximate expression in (13))

log(M)

P(£) = eXP("‘T-/l)- (55)
Thus, the gain of MPPM over QPPM is
log (3) h(p/Q)
G=10lo —F2 <10l [ }, 56
€10 [ 2p £10 Q(P/Q) ( )

where the bound is in view of (4). It is easy to see that G increases monotonically as p/Q
decreases. However, as p/Q decreases, so does the rate in bits/slot: rT, = log[(g)]/Q <
h(p/Q). If we constrain the rate in bits/slot to be at least 1/2 (that of QPPM) and the peak-
to-average power to be at least 4 (that of QPPM), then 1/4 > p/Q > h~!(1/2). Evidently,
the largest gain is obtained for p/Q = A~'(1/2) and is

G < —10log,o[4h71(1/2)] ~ 3.56 dB, (57)

indicating that MPPM can provide some gain even without coding. The 3.56dB gain is the
maximum that can be obtained without the use of further coding, and can only be achieved
at very large (theoretically infinite) values of Q. As an example of what can practically
be achieved, consider Q = 16, p = 4 MPPM resulting in 1820 signals; this is the example
studied in [11]. Deleting enough signals to obtain 1024 signals (10 bits/symbol) it is easy to
see that the minimum distance of the 1024 signal constellation is still two, the same as the
original constellation; thus (55) still holds by replacing M by 1024. The resulting coding
gain over QPPM is 0.969dB, which is what was reported in [11] using simulations. Next we
investigate the use of coding over MPPM signals.

It is clearly possible to use only a subset of the MPPM signals for a given @ and p for
which the minimum distance is greater than two, at the expense of a throughput reduction.
In particular, we are interested in a 3dB gain over QPPM, by insisting that the minimum
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Hamming distance for the subset of MPPM symbols be at least four. Table 4 shows the
results of a computer search for such codes for different values of Q and p. The table gives
the number of MPPM symbols whose distance is at least four, and the rate in bits/slot of
a practical code obtained by deleting additional symbols (codewords) in order to obtain a
number who is a power of two. This deletion of symbols can be made intelligently in order to
facilitate for example synchronization and to relax the strain on the laser (as was discussed
for example in [11]). In the interest of space, we do not list the codewords for the codes
listed in the table.

As can be seen from the table, it is possible to obtain codes with a 3dB gain over QPPM
at rates of 1/2 bits/slot or better and for a = 4. The problem is that these are nonlinear
codes and efficient techniques for decoding must be found before they can become practical.
If the laser can support smaller values of a, then smaller codes can be designed with a 3dB
gain over QPPM and the same rate. For example, for a = 3.2, a code with a 3dB gain over
256 MPPM symbols and rate 1/2 can be designed. Finally, for a = 2, a rate 9/16 code can
be designed with @ = 16 that has a 3dB gain over QPPM.

For more powerful codes that can be also practically implemented, a concatenated coding
scheme where a block or trellis code is used over a set of MPPM symbols (which can be
thought of as the inner code) may be necessary. Such an approach was employed in [11]
where a Reed-Solomon code was used in conjunction with 1024 MPPM symbols. Here,
instead, we investigate briefly the use of trellis-coding over MPPM symbols.

For the example here we use the 8-state Ungerboeck trellis shown in Figure 9 [24]. With
Q@ =9, p=2 MPPM, we have M = 36 signals, four of which can be deleted to yield a set of
32 modulation signals. Two of those deleted signals could be those having pulses at the first
two and last two slots, to avoid the possibility of the laser being on over four consecutive
slots. The other two signals to be deleted can be chosen based on other criteria, such as
to help synchronization. The rate of the trellis code is 4/5, which when multiplied by 5/9,
the rate in bits/slot of the MPPM signal set, gives an overall rate of 4/9 bits/slot. The
peak-to-average power ratio is o = 4.5.

The next step is to partition the 32 MPPM symbols into eight subsets of four signals each
whose Hamming distance (since as noted above it is the Hamming distance that determines
performance) is greater than the minimum of the 32-MPPM constellation. Since for p=2
the two possible signal distances are two and four, this means that the distance between
signals in the same subset (which correspond to parallel transitions) must be four. This
further implies that the mazimum free distance of the code is four. Since signals leaving and
entering a state have a Hamming distance of at least two, this implies that the minimum free
distance of the code is four, which combined with the above observation means that the code
has a free distance of four. Thus, for the same energy per bit, the code has a 3dB asymptotic
coding gain over QPPM. This gain was verified through simulations, as shown in Figure 8.
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Figure 9 shows the partitioning of the 32-MPPM signals into subsets D0, D1, ---,D7. In
describing the subsets, an MPPM signal is represented by p numbers (p = 2 here) enclosed
in parentheses that indicate the bit positions where the pulses are located.

More work on the topic needs to be done to obtain high rate codes (greater than 1/2)
that provide good coding gains while satisfying the duty-cycle and peak and average power

constraints imposed by the laser.

5 Conclusion

We have studied various aspects of modulation and coding for high rate optical links, by
analyzing and comparing the performance of various modulation schemes under different
criteria. No modulation scheme considered was seen to be uniformly superior to all other
under all constraints and all parameter values. OPPM seems to perform better than MPPM
in terms of throughput at small values of Q (Q = 2 is best) whereas MPPM’s power is evident
at the larger values of Q, that result in large signal constellations. On the other hand, with
small Q) values OPPM requires large indices of overlap for large throughput, which will make
synchronization more difficult in a practical implementation. OOK performed very well in
most comparisons, especially at the higher rates. Its drawback is that it’s not an equal
energy signaling scheme (which means that an estimate of the received power is needed by
the receiver before decisions are made), and it does not guarantee that long streams of zeros
or ones will not occur. PPM was seen to be largely inferior to the other modulation schemes.

All modulation schemes studied in this paper were obtained by imposing block constraints
on binary sequences, i.e., sequences of these modulation symbols are subsets of the set of all
possible OOK sequences. It is thus entirely possible (if not certain) that one can start with
OOK and by more judiciously imposing constraints produce schemes that operate at higher

rates than the modulation schemes studied here.
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Figure 1: An example of OPPM for Q = 2, N = 3.
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Figure 2: An example of MPPM for Q = 4, p = 2.
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Figure 3: The DMC model for (4,2)-MPPM.

Table 1: Capacity in Nats/Photon. The numbers in parentheses for MPPM and OPPM
correspond to the optimum values of Q, and for OOK, to a uniform prior distribution.

rT, Cons PPM | Cpi, p = 2 MPPM Con, N =2 OPPM | C,y, OOK
nats/slot | nats/photon nats/photon nats/photon nats/photon
0.10 1.859 (16) 2.055 (35) 1.998 (18) 0.697 (0.663)
0.15 1.423 (10) 1.642 (23) 1.589 (12) 0.676 (0.647)
0.20 1.102 (7) 1.343 (16) 1.297 (9) 0.654 (0.629)
0.25 0.833 (5) 1.103 (13) 1.069 (7) 0.631 (0.609)
0.30 0.598 (4) 0.898 (10) 0.877 (6) 0.606 (0.588)
0.35 0.337 (3) 0.711 (8) 0.716 (5) 0.579 (0.564)
0.40 — 0.523 (7) 0.579 (4) 0.550 (0.538)
0.45 — 0.284 (5) 0.437 (3) 0.518 (0.509)
0.50 — — 0.318 (3) 0.482 (0.476)
0.55 — — — 0.441 (0.436)
0.60 — — — 0.390 (0.388)
0.65 — — — 0.320 (0.319)
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Figure 4: Nats per photon as a function of @ for OPPM various r7, in nats/slot.

Table 2: Throughput limitations in nats/slot.
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Figure 5: Nats per photon as a function of Q for MPPM various r7, in nats/slot.
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Table 3: Peak-power performance in photons/nat at an error-probability of 10-3.

OOK PPM OPPM MPPM
291X /r 1 Q1 A/r [Q,N,J Afr | Q,p, M | A /r
4 ] 548 | 4 | 19.10 3,2,5 24.92 | 5,2,10 | 31.76
8 |5.780 | 8 | 26.06 | 5,2,10 | 30.90 | 5,2,10 | 31.76
16 | 5.98 | 16| 39.49 | 9,2,17 | 43.50 | 7,2,21 | 34.11
32| 6.14 [ 32| 63.49 | 17,2,33 | 66.87 | 12,2,66 | 42.99
64 | 6.27 | 64 | 106.06 | 33,2,65 | 108.97 | 12,2,66 | 42.99
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Table 4: Various coding rates for MPPM signal sets with minimum Hamming distance of
four.

Q, p, a Number of Symbols | Code Rate
Q=24,p=6 a=14 4316 1/2
Q=28 p=7 a=4 37202 15/28
Q=16, p=5, a=32 273 1/2
Q=18, p=6, a =3 756 1/2
Q=12 p=6 a=2 68 1/2
Q=14,p=17 a=2 232 1/2
Q=16 p=8, a=2 §70 9/16

DO Set Partitioning

D1 D7 D5 D3 D0={(1.2),(3.4).(5.6).(7 9}

D1={(1.3).(2.4).(56.7).(6.8)}

D6 D4 D2 DO

D2=((1.4).(2.3).(5.8) (6.7
D7 DI D3 D5 { OB

D3=((1.5).(2,6).(3.8).(4.9))
D4 D6 DO D2

D4=((1.6).(2.5).3.9).(4.7))
D> D3 D1 D7 D5=((1.7).(2.9).(3.5).(4.6))

D2 DO D6 D4

D6=((1.8).(2.7).(3.6).(5.9)}

D7={(1.9).(2.8).(3.7).(4.5)}

D3 D5 D7 D) 0=

Figure 9: The trellis for the 8-State code used with the 32 MPPM signals and the subsets
resulting from set-partitioning: Q =9, p = 2.



